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Abstract - Elastic flexural waves in an unloaded and unsup-
ported segment of a non-uniform beam were considered. A 
method based on Timoshenko’s model was established for 
evaluation of shear force, transverse velocity, bending moment 
and angular velocity at an arbitrary section from four inde-
pendent measurements of such quantities at one to four sec-
tions. From the evaluated quantities, shear stress, power 
transmission, etc. can be obtained. Experimental tests were 
carried out with an aluminium beam which had an abrupt 
change in height from 15 to 20 mm and was equipped with 
strain gauges and accelerometers at four uniformly distributed 
measurement sections and at three evaluation sections. The 
distance between the two outermost measurement sections was 
600 mm, corresponding to 1.12 wave lengths at the upper end 
of the frequency interval 2500 Hz considered. Bending mo-
ments and transverse velocities evaluated from four measure-
ments of any one of these quantities agreed well with those 
measured at evaluation sections located (i) centrally among the 
measurement sections and (ii) at a distance of 100 mm, or 0.17 
wave lengths, outside. When it was located (iii) at a distance of 
500 mm, or 0.83 wave lengths, outside, there was relatively 
large disagreement as expected from error analysis.       
Keywords: Elastic Flexural Wave, Unloaded Segment, Uniform 
Beam, Timoshenko Theory. 

I. INTRODUCTION

Generation of elastic flexural waves in beams occurs in dif-
ferent technological processes, often as a side effect. In per-
cussive drilling of rock, e.g., use is made of elastic exten-
sional waves, but due to eccentric impacts, drill rods that are 
not perfectly straight [1], unsymmetrical loading of the drill 
bit [2], etc., flexural waves are also generated. This gives 
rise to, e.g., leakage of energy from the extensional waves, 
increased stress levels and increased generation of noise. If 
the predominant wavelengths are at least of the order of the 
transverse dimensions of the beam, the motion of flexural 
waves can be examined by using the Timoshenko beam 
model. If they are much longer, the wave motion can be 
studied also by using the Euler-Bernoulli beam model [3]. 

In various applications, and for different purposes, it is in-
teresting to know the histories of shear force, transverse 
velocity, bending moment and angular velocity associated 
with flexural waves at one or several sections of a beam. 
From them, histories of other important quantities such as 
shear stress, deflection, normal stress, rotation of a cross-

section and power transmission can also be determined. 

For elastic extensional waves, Lundberg and Henchoz [4] 
showed that histories of normal force and particle velocity 
at an arbitrary section E of a uniform bar can be evaluated 
from measured strains at two different sections A and B by 
solving time-domain difference equations which are exact in 
relation to the one-dimensional theory used. A similar 
method was used by Yanagihara [5] to determine impact 
force. Lagerkvist and Lundberg [6], Lagerkvist and Sundin 
[7] and Sundin [8] used the method to determine mechanical
point impedance. The method was used also by Karlsson et
al. [9] in a study of the interaction of rock and bit in percus-
sive drilling. It was extended to non-uniform bars by
Lundberg et al. [10], and this version of the method was
used for determination of force-displacement relationships
for different combinations of drill bits and rocks by Carls-
son et al. [11] and for high-temperature fracture mechanics
testing by Bacon et al. [12, 13]. The use of the method was
extended to visco-elastic extensional waves by Bacon [14,
15].

The aim of the present paper is to develop a method for 
evaluation of the histories of shear force, transverse veloci-
ty, bending moment and angular velocity at an arbitrary 
section E of a non-uniform beam from measurements of 
such quantities at different sections A, B, C and D. It will be 
shown that, for an unloaded segment of the beam, this can 
be achieved through measurement of altogether four such 
quantities which differ from each other in terms of either 
section (A, B, C and D) or type of quantity (shear force, 
transverse velocity, bending moment and angular velocity), 
or both. 

First, the method will be developed on the basis of Timo-
shenko’s beam model. Then, experimental impact tests with 
a non-uniform beam made of aluminium and equipped with 
strain gauges and accelerometers will be presented, and 
comparisons will be made between (i) bending moments 
and particle velocities evaluated at section E on the basis of 
measurements at sections A-D and (ii) the same quantities 
measured at section E. 
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II. THEORETICAL BASIS 
 
A.FORMULATION OF THE PROBLEM 
  
Consider a segment of a non-uniform Timoshenko beam 
with cross-sectional area )(xA , moment of inertia )(xI , 
Young’s modulus )(xE , shear modulus )(xG  and density 

)(xρ , where x  is a co-ordinate along the straight centre 
line of the beam. For a rectangular cross-section, as in the 
experimental part, WHA =  and 12/3WHI = , where 
W  is the width and H  is the height. The shear modulus is 
related to the Young’s modulus by the relation 

)1(2/ ν+= EG , where ν  is Poisson’s ratio. Within the 
beam segment, there must be no loads, supports, joints or 
spots of contact. Outside, where there are no such re-
strictions, the beam is assumed to interact with supports, 
structures and loads. The supports and structures may have 
linear or non-linear responses, and they are assumed to have 
the capability to absorb energy associated with vibrations. 
Furthermore, the loads are assumed to act during finite time. 

Otherwise, nothing needs to be known about supports, 
structures or loads outside the beam segment under consid-
eration. 
 
The beam is quiescent for time 0<t , and for 0≥t  it is 
subjected to a transverse load with finite duration. As a con-
sequence, there will be a deflection of centre-line ),( txw  
and a rotation of cross-section ),( txφ . In the beam segment 
considered, these deflections and rotations are governed by 
the equations of motion 
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Respectively, where ),( txQ  is the transverse shear force 
and ),( txM  is the bending moment. The deflections and 
rotations are related to each other through the compatibility-
type relation 

0γφ +−=
∂
∂

x
w ,             (2) 

Where 0γ  is the shear strain on the centre-line, see Figure 
1.  

 

 
 

Fig.1. Anglesφ , 0γ , xw ∂∂ / , shear force Q , transverse velocity w , bending moment M  and  

angular velocity φ  at a general section x  of the beam. 

 
The terms φ−  and 0γ  on the right-hand side represent the 
contributions to the slope of the centre-line of the beam 
from bending and shear, respectively, and they are related to 
the bending moment and the transverse shear force through 
the constitutive-type relations 

x
EIM

∂
∂

=
φ , 0γκGAQ = ,              (3) 

Where κ  is a dimensionless quantity which depends on the 
shear stress distribution and therefore on the shape of the 
cross-section. According to beam theory, this quantity can 

be determined from the relation
1

222 d)/()/(
−





= ∫ AWSIAκ , 

where the static moment S  and in general also the width 
W depend on the vertical co-ordinate z  from the centre-
line. For a rectangular cross-section, this formula gives 

83.06/5 ≈=κ , which is the value to be used in the ex-
perimental part. According to another definition, κ  may 
depend also on Poisson’s ratio. 
 
Equations (1) - (3) provide five relations between the five 
unknown functions ),( txQ , ),( txw , ),( txM , ),( txφ  

and ),(0 txγ . Through elimination, these relations can be 
transformed into, e.g., a system of two second-order partial 
differential equations (PDEs) for ),( txw  and ),( txφ  or 
into a single fourth-order PDE for ),( txw . Here, it will be 
more convenient to consider the system of four first-order 
PDEs 
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For the four quantities ),( txQ , ttxwtxw ∂∂= /),(),( , 

),( txM  and ttxtx ∂∂= /),(),( φφ , which is obtained by 

eliminating ),(0 txγ  from equations (1) - (3). These quanti-
ties constitute the elements of a state vector

[ ]T
,,,),( φ MwQtx =s , which is zero for 0<t . Further-

more, because of the energy-absorbing agents outside the 
beam segment, 0s →),( tx  as ∞→t . 
 
The problem to be solved is as follows. Consider the four 

elements Q , w , M  and φ  of the state vector s  at four 
different sections A, B, C and D of the beam segment, i.e., 
altogether sixteen elements. Let four out of them, constitut-
ing the elements of a vector m , be known from measure-
ments for 0≥t . Then, determine the state vector s  or its 
Fourier transform ŝ  (which is assumed to exist) at any sec-
tion E of the beam segment. See Figure 2, where it is indi-
cated that the variation of the geometrical and material 
properties along the beam segment may be continuous or 
discontinuous 

 

 
Fig.2 Unloaded section of non-uniform beam in the general case. Sections of measurement A-D and of evaluation E. 

 
B.SOLUTION IN THE GENERAL CASE 
Fourier transformation of relations (4) gives sRs ˆˆ =′ ,      (5) 
Where 
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Is the system matrix: 
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Is the Fourier transform of the state vector s , i.e., ∫
∞

∞−

−= ttxx t de),(),(ˆ iωω ss , and x∂∂=′ /ˆˆ ss . The state at any section 

x  is related to that at the fixed section 0x  through 
),(ˆ),,(),(ˆ 00 ωωω xxxx sPs = .       (8) 

Here, by equations (5) and (8), the transition matrix ),,( 0 ωxxP  satisfies  

RPP =′ , IP =),,( 00 ωxx ,    (9) 

Where I  is the identity matrix. In particular, equation (8), with A0 xx =  and with Axx = , Bx , Cx , Dx  and Ex , gives 
AAAA ˆˆ ssP = , BABA ˆˆ ssP = , CACA ˆˆ ssP = , DADA ˆˆ ssP =  (10) 

For the segments AA, BA, CA and DA, and 
AEAE ˆˆ sPs =          (11) 

For the segment EA. In equation (10a) it should be noted that IP =AA . 
The problem of determining the state vector Eŝ  from knowledge of four out of the sixteen elements of the state vectors Aŝ , 
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Bŝ , Cŝ  and Dŝ  can now be solved as follows. First, four scalar equations, with linear combinations of the elements of Aŝ  in 

their left-hand members and the measured elements of Aŝ , Bŝ , Cŝ  or Dŝ  in their right-hand members, are singled out from 
the twelve scalar equations represented by equations (10). They form a system of four linear equations for the four elements 
of Aŝ  which can, at least in principle, be solved uniquely if the determinant of this system is different from zero. Then, with 

Aŝ  known, Eŝ  is determined from equation (11). It should be noted that the physical order of sections A-E along the beam 
must not be alphabetical and also that all sections A-D must not be involved in the measurements. 
 
As a first illustration, consider measurement of the bending moment M  at each section A-D. In this case, the third scalar 
equation from each of the matrix equations (10) gives the system 
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Where subscript m denotes measurement. It can also be written 
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As IP =AA , the first row of the matrix on the left-hand side is [ ]0,1,0,0 , which gives the trivial relation A
meas

A ˆˆ MM =  or 
A
meas3

A
3 ˆˆ ss = . 

 
As a second illustration, consider measurement of the transverse velocity w  at each section A-D. In this case, the second 
scalar equation from each of the matrix equations (10) gives the system 
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This can also be written 
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As IP =AA , the first row of the matrix on the left-hand side is [ ]0,0,1,0 , which leads to the trivial relation A
meas

A ˆˆ ww  =  or 
A
meas2

A
2 ˆˆ ss = . 

 
In the general case, equations (13) and (15) take the form 
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Or 
msM ˆˆA = ,    (17) 

 
Where 
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c
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c
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Here M  is a matrix with elements jkM  singled out from 

the transition matrices AAP , BAP , CAP  and DAP , and m̂  
is a vector with elements jm̂  of measured quantities at dif-

ferent sections of the beam ( j  and =k 1, 2, 3 or 4). The 

subscript =je 1, 2, 3 or 4 defines the type of quantity ( Q̂ , 

ŵ , M̂  or φ̂ , respectively) and the superscript =jc  A, B, 

C or D the section associated with jm̂ . These quantities, 
which can be considered to be the elements of vectors e  
and c , respectively, define the measurements. 
 
Equations (11) and (17) give the state vector 
 

mMPs ˆˆ 1EAE −= ,     (19) 
 

in terms of the vector m̂  of measured quantities. Transfor-
mation into the time domain gives the state vector )(E ts  
for 0≥t . This solves the stated problem. 
 
If there is an error m̂∆  in m̂ , it follows that there will be a 
corresponding error 
 

mMPs ˆˆ 1EAE ∆=∆ −    (20) 
 

in Eŝ . On the element level, an error Eˆ js∆  in the evaluated 

quantity Eˆ js , due to an error km̂∆  in the measured quantity 

km̂ , can be expressed ( ) kkjj mmss ˆˆ/ˆˆ EE ∆∂∂=∆ . Compari-

son with equation (20) shows that the derivative kj ms ˆ/ˆE ∂∂  

can be obtained as the element jk  of the matrix 1EA −MP . 
The absolute value of this derivative will be used as a meas-

ure of the sensitivity of the evaluated quantity Eˆ js  to an er-

ror in the measured quantity km̂ . 

 
C.BEAM WITH PIECEWISE CONSTANT PROPERTIES 

 
Fig.3 Unloaded section of beam with piece-wise constant properties. Sections of measurement A-D and of evaluation E. 

 
If the beam has piecewise constant properties as indicated in Figure 3, the transition matrices in equations (10b-d) and (11) 
can be expressed as the products 
 

11BA PPPP −= pp , 11CA PPPP −= qq , 11DA PPPP −= rr ,     (21) 
And 

11EA PPPP −= ss ,    (22) 
 
Respectively, of transition matrices 1P , 2P ,..., sP  for 
beam elements with constant properties. These matrices, in 
turn, can be determined by first solving the problem (9) for 
matrices R  which are independent of x , and then substi-

tuting appropriate values for x  and 0x . In this case, the 
coupled problem (9) for the elements of P  can be replaced 
by an uncoupled problem as follows.  
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For R  independent of x , equation (9a) gives 

RPP =′ ,     PRP 2=′′ ,     PRP 3=′′′ ,     PRP 4IV = .   (23) 
 
The eigenvalues γ  of the matrix R  are given by the four 

roots of 0=− IR γ , i.e., with use of definition (6), 
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Which is presumed. According to Cayley-Hamilton’s theo-
rem, equation (24) for the eigenvalues of the matrix R  is 
satisfied also by R , i.e., 

0IRR =−+ ba 24 2 .               (29) 
 
Multiplication by P  from the right and use of relations 
(23b, d) gives the fourth-order differential equation 

0PPP =−′′+ ba2IV .           (30a) 
 
Furthermore, relations (9b) and (23a-c) give the conditions 
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RP =′ ),,( 00 ωxx , 200 ),,( RP =′′ ωxx ,  300 ),,( RP =′′′ ωxx (30c-e) 

 
For 0xx = . Thus, the coupled problem (9) for the elements 
of P  has been replaced by the uncoupled problem (30), 
which has the solution 
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III.EXPERIMENTAL TESTS 
 
The experimental set-up is illustrated in Figure 4. A beam 
made of aluminium (AA 6061-T6; 70=E  GPa, 3.0=ν  and 

2700=ρ  kg/ 3m ) with rectangular cross-section and length 
2250 mm was used. The width W  of the beam was 20 mm, 
while its height H  was 15 mm in the central third and 20 
mm in the two outer thirds. The beam was held in position 
by three supports with positions as shown. Each of these 

supports was realised with a pair of 15 mm wide clamps 
clad with 1.5 mm thick rubber plates. The beam was im-
pacted laterally by a spherical steel ball which was guided 
by a tube and dropped from a height of 600 mm. The diame-
ter of the ball was 50 mm, and its mass was 535 g. A 3 mm 
thick rubber plate at the impacted spot of the beam served to 
reduce the excitation at high frequencies. 

Fig.4 Experimental set-up. Dimensions in mm. 
 
The beam was instrumented with strain gauges and accel-
erometers at the sections A-D and 1E - 3E  as shown in Fig-
ure 4. The positions of the strain gauges coincided with 

these sections, while those of the accelerometers were dis-
placed 20 mm to the right, i.e., away from the spot of im-
pact. The strain gauges (TML FLA-5-23-1L) were glued 
(Tokyo Sokki Kenkyujo Co, Ltd, Adhesive CN) to the beam 
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in pairs with one on the top and one on the bottom. The 
gauges of each pair were connected to a bridge amplifier 
(Measurement Group 2210) in opposite branches, so that the 
output of the amplifier was proportional to the difference 
between the two strains, and therefore to the bending mo-
ment M  at the section. Shunt calibration was used. Accel-
erometers (Brüel & Kjær, three Types 4374 and two Type 

4393) were attached with thin layers of wax. The accel-
erometers were connected to charge amplifiers (three Kistler 
Type 5011 and two Brüel & Kjær Type 2635). Ideally, there 
should have been one type of accelerometer and one type of 
charge amplifier only, but it was judged that the use of dif-
ferent types would not have any noticeable effect upon the 
results. 

 
The amplified strain and accelerometer signals were fed to 
analogue aliasing filters (DIFA Measuring Systems, PDF) 
with cut-off frequency 17.5 kHz. The filtered signals were 
recorded in a time interval [ ]re,0 t , with 25.0re ≈t  s, by two 
synchronised four-channel digital oscilloscopes (Nicolet Pro 
20 and Pro 40) which used a sampling interval of 20 µs. At 
the end of this time interval, the amplitudes of the recorded 
signals were reduced to about a tenth due to the damping 
action of the supports. The recorded signals were transferred 
to a computer for evaluation of the state vector )(E ts . First, 
measured accelerations, if any, were integrated to velocities. 
After use of the FFT algorithm, )(ˆ E ωs  was determined ac-
cording to equation (19). Finally, )(ˆ E ωs  was transformed 
into the time domain by use of the inverse FFT algorithm. 
Results were produced for the same time interval [ ]re,0 t  
even though sometimes they may be valid only in a narrow-
er interval [ ]ev,0 t . When, e.g., section E is located outside 
AD, as in some of the experimental tests, there must clearly 
be a certain difference between ret  and evt  which is related 
to the travel times for flexural waves from section E to sec-
tions A-D.  
 
 

Four test cases, labelled 1 - 4, are defined in Table 1. In 
Case 1, bending moments M  at sections A-D ( [ ]T3,3,3,3=e ,

[ ]TDC,B,A,=c ) and 1E - 3E  were determined from meas-
urements of strains at the same sections. In Case 2, bending 
moments M  at sections A-D and transverse velocities w  
at 1E - 3E  were determined from measurements of strains 
and accelerations, respectively, at the same sections. In Case 
3, transverse velocities w  at sections A-D ( [ ]T2,2,2,2=e , 

[ ]TDC,B,A,=c ) and 2E  were determined from measure-
ments of accelerations at the same sections. In Case 4, final-
ly, transverse velocities w  at sections A-D and bending 
moment M  at 2E  were determined from measured accel-
erations and strains, respectively, at the same sections. In 
this case, the signals representing accelerations and strains 
were passed through 8-pole Butterworth high-pass filters 
with cut-off frequency 10 Hz. In each of the four cases, 
bending moments M  or transverse velocities w  at sec-
tions 1E - 3E , corresponding to the measurements made at 
these sections, were also determined from those measured at 
A-D according to equation (19). All tests were carried out at 
room temperature. 

 
 

TABLE I CASES OF EXPERIMENTAL TESTS. 

Case 
 Input  Output  High-pass 
 A-D  

1E  2E  3E   Filter 

1  M   M  M  M   No 
2  M   w  w  w   No 
3  w   - w  -  No 
4  w   - M  -  Yes 

 
IV. RESULTS 

 
Figure 5 shows for Case 1 the sensitivity CE ˆ/ˆ MM ∂∂  of the 

bending moment EM̂  to an error in the bending moment 
CM̂  as a function of the position Ex  of section E and of the 

frequency πω 2/=f . It can be seen that the sensitivity to 

error is unity or less if the position Ex  is not too far outside 

the interval [ DA , xx ] and if the frequency is not too high. 

In particular, the sensitivity to error is zero if =Ex Ax , 
Bx  or Dx , and it is unity if =Ex

Cx . It should also be not-
ed that the sensitivity to error is very high around a frequen-
cy of approximately 850 Hz. Similar results were obtained 
for other cases and other sensitivities. 
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Fig.5 Sensitivity 
CE ˆ/ˆ MM ∂∂  of bending moment EM̂  to error in bending moment CM̂  vs. position 

Ex  and frequency f  in Case 1. (a) 100 

Hz << f  600 Hz and (b) 500 Hz << f  1000 Hz. 

 
Figure 6 shows results in the time and frequency domains at 
section 1E  for Case 1. In Figure 6(a), the results in the time 
domain are based on frequencies up to 500 Hz, which 
means that frequencies around 850 Hz are excluded, while 
in Figure 6(b) they are based on frequencies up to 2000 Hz. 

Evidently, there is a significantly better agreement between 
evaluated and measured bending moments in the former 
case. For this reason, the results for Cases 1-4 shown in 
Figures 7-10 are based on frequencies up to 500 Hz. 

 
Fig.6. Bending moment 1EM  vs. time t  and 1EM̂  vs. frequency f . Comparison between bending moment at 1E  evaluated from bending moments 

measured at A-D (solid curves) and bending moment measured at 1E  (dotted curves) in Case 1. Results for frequencies up to (a) 500 Hz and (b) 2000 Hz. 
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V. DISCUSSIONS 
 

It has been shown how the elements Q , w , M  and φ  of 
the state vector s  at any section E of an unloaded segment 
of a non-uniform beam can be determined from measure-
ment of four such elements at up to four different sections 
A, B, C and D of the same unloaded segment of the beam. 
This has also been demonstrated experimentally. Once the 
state vector has been determined, several quantities of im-
portance can be obtained from its elements. Thus, e.g., the 
shear stress τ  can be obtained from Q , the normal stress σ  
from M , the deflection w  from w , and the rotation of the 
cross-section φ  from φ . Also, the power transmission can 
be obtained from the relation )( φ MwQP +−= . It should be 
emphasized that nothing needs to be known about supports, 
structures and loads outside the beam segment under con-
sideration. 
 
The combination of sections, among A, B, C and D, and 
types of quantities to be measured, among Q , w , M  and φ , 
can be chosen in a large number of ways, some of which 
may be more interesting than others. Thus, it is convenient 
to determine bending moment M  from measured strains 
and transverse velocity w  from measured accelerations, as 
was done in the experimental part, while it is less straight-
forward to determine Q  or φ  from measurements. Also, it 
seems preferable to place at most two types of transducers 
at any section A-D of the beam, and to make the same kind 
of measurement or measurements at each instrumented sec-
tion. Therefore, two interesting possibilities are measure-
ment of (i) M  at each section A-D (Cases 1-2) and (ii) w  
at each section A-D (Cases 3-4), as in the experimental part. 
A third interesting possibility would be measurement of (iii) 
both M  and w  at each of two sections, e.g., A and B. It 
should also be noted, that a free end, say A, with 0A ≡Q  
and 0A ≡M  can be used to replace two measurements. Oth-
er types of homogeneous boundary conditions generally 
represent real situations less accurately. 
 
The functions )(ωα  and )(ωk  introduced in equations (26) 
and (27) can be interpreted as follows. Let the state vector 
have the form )exp(ˆˆ * xβss = . Then, substitution into equation 
(5) gives the eigenvalue              problem ** ˆˆ ssR β= . The 
eigenvalues β  are given by the four roots of 0=− IR β , i.e., 
the four roots of equation (24) with γβ = . Thus, according 
to equation (26), the eigenvalues are αβ ±=  and ki±=β . 
Therefore, provided that the condition (28) is satisfied as 
presumed, α  determines the decay of non-propagating dis-
turbances and k  is the wave number of propagating har-
monic waves ( 0>ω ).  
 
For radian frequencies Rc /00 =<< ωω , where ( ) 2/1

0 / ρEc =  

is the speed of elastic extensional waves and ( ) 2/1/ AIR =  is 
the radius of inertia of the cross-section, equations (27) can 
be approximated by 4/1bk ≈≈α  and equation (25b) by 

2)/( ωρ EIAb ≈ . As by definition the wave number k  is relat-
ed to the wave length λ  by λπ /2=k , one obtains λπα /2≈  
with ( ) RRc πωπλ 2/2 2/1

0 >>≈ . In terms of the frequency 

πω 2/=f  and the height RH 32=  of a beam with rec-
tangular cross section, the corresponding relations are

Hcff θ/00 =<< , λπα /2≈ , and ( ) 2/1
0 / fHc θλ ≈ Hθ>> , with 

3/πθ = .  These approximations of α  and λ  at low fre-
quencies represent the limiting case of the Euler-Bernoulli 
beam.  
 
For the aluminium beam used in the experimental tests, the 
highest frequency normally considered, 500 Hz, corre-
sponds to the wavelengths 0.606 m and 0.525 m in the seg-
ments with heights 20 mm and 15 mm, respectively. Simi-
larly, the frequency 2000 Hz, considered in Figure 6 only, 
corresponds to the wavelengths 0.300 m and 0.260 m, re-
spectively. Thus, in the tests carried out the wavelengths 
were much larger than the heights of the beam, and 0ff << . 
This means that the above approximations are accurate and 
also that the condition (28), which can be written in the 
form <f [ ] 2/1

0 )1(2/ νκ +f , is satisfied. 
 
The determination of errors at section E due to errors of 
measurement, including noise, at one or several of sections 
A-D according to relation (20) can be split into the two 
steps (i) mMs ˆˆ 1A ∆=∆ − , which gives errors at section A in 
terms of errors of measurement, and (ii) AEAE ˆˆ sPs ∆=∆ , 
which gives errors at E in terms of errors at A. In the time 
domain, these steps correspond to a deconvolution and a 
convolution, respectively. Under certain conditions, each of 
them may generate large errors. Such conditions are related 
to the matrices AAP - DAP , which determine the elements 
of the matrix M , and to the matrix EAP . For the discussion 
which follows it is useful to note from equation (31) that, in 
the special case of a uniform beam and for relatively low 
frequencies with λπα /2≈ , these matrices contain terms 
proportional to 0e , λπ /)(2 AB xxe −± , ..., and λπ /)(2 AE xxe −± , 
respectively.  
 
In the first step, which involves inversion of the matrix M , 
the error Aŝ∆  may become large if the matrix M  is ill-
conditioned. In the case represented by equation (12), this 
may occur at low frequencies corresponding to long wave 
lengths which make the four scalar equations nearly the 
same. It may also occur at high frequencies corresponding 
to short wave lengths which make the magnitudes of the 
elements in the different rows of the matrix M  very differ-
ent. Thus, e.g., the ratio of the exponential factors of the 
fourth row in equation (12) to those of the first row is 
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λπ /)(2 AD xxe − , which may be very large even for modest 

ratios 1/)( >− λAD xx . In the experimental tests, the 
distance AD (600 mm) was slightly longer than one wave 
length ( λ12.1≈ ) at the highest frequency 500 Hz which 
corresponds to the ratio 324.2 101.1 ⋅≈πe . The matrix M  
may be ill-conditioned also near discrete frequencies which 
make several distances between adjacent sections A-D equal 
to an integral multiple of a half wave length. In Case 1, the 
distances AB and BC in the thinner central section of the 
beam are one half wave length at a frequency of about 860 
Hz which may explain the high sensitivity to errors around 
850 Hz illustrated in Figure 5. This problem was avoided in 
the experimental tests by only considering frequencies be-
low 500 Hz.   The effects of noise in the measured data may 
be reduced by use of Wiener filtering techniques [16]. Also, 
a conceivable way of avoiding integral multiples of half 
wave lengths between adjacent sections A-D, which might 
allow frequencies considerably higher than 500 Hz, would 
be to make use of more than four measurements, so that the 
system (17) for the elements of Aŝ  would be over-
determined, and of a non-uniform distribution of instru-
mented sections. This way of eliminating critical frequen-
cies has been found to be effective in an application involv-
ing viscoelastic extensional waves [17].  
 

 
 

In the second step, which involves multiplication of the er-
ror Aŝ∆  at section A with the matrix EAP , the error Eŝ∆  
may become large if the exponential factor λπ /)(2 AE xxe −  is 
very large. This occurs if the distance AE is large. In the 
experimental tests the distances 1AE , 2AE  and 3AE  
were approximately 0.57, 1.28 and 1.94 wave lengths at the 
highest frequency 500 Hz. Thus, 1E  was located at the cen-

tre of the beam segment AD, while 2E  and 3E  were locat-
ed at distances 0.16 and 0.82 wave lengths, respectively, 
outside this segment. The corresponding exponential factors 
were 114.1 106.3 ⋅≈πe , 356.2 101.3 ⋅≈πe  and 588.3 100.2 ⋅≈πe , 
respectively.  For Case 1, Figure 7 shows that there is excel-
lent agreement in the frequency range 2-500 Hz between (i) 
the bending moment evaluated at section 1E  from meas-
urements of bending moments at sections A-D and (ii) the 
bending moment measured at the same section 1E . For sec-

tion 2E  the agreement is very good in the same range of 

frequencies. For section 3E  there is relatively large disa-
greement, in particular at high frequencies, corresponding to 
short wave lengths and large exponential factors 

λπ /)(2 AE xxe − , and in the time domain near 25.0re ≈≈ tt  s.  
 

 

Fig.7. Bending moments (a) 
1EM  vs. time t  and 

1EM̂
 vs. frequency f , (b) 

2EM  vs. time t  and 

2EM̂
 vs. frequency f , and (c) 

3EM  

vs. time t  and 

3EM̂
 vs. frequency f . Comparison between bending moments at 1E - 3E

 evaluated from bending moments measured at A-D (solid 

curves) and bending moment measured at 1E - 3E
 (dotted curves) in Case 1. Results for frequencies up to 500 Hz. 
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For Case 2, Figure 8 shows that there is good agreement in 
the frequency range 10-500 Hz between (i) the transverse 
velocity evaluated at section 1E  from measurements of 
bending moments at sections A-D and (ii) the transverse 
velocity measured at the same section 1E . For section 2E  
the agreement is fair in the same range of frequencies. For 

section 3E  there is again relatively large disagreement, in 
particular at high frequencies, corresponding to short wave 
lengths and large exponential factors λπ /)(2 AE xxe − , and in the 
time domain near 25.0re ≈≈ tt .  

 

Fig.8. Transverse velocities (a) 
1Ew  vs. time t  and 

1Eŵ  vs. frequency f , (b) 
2Ew  vs. time t  and 

2Eŵ  vs. frequency f , and (c) 
3Ew  vs. 

time t  and 
3Eŵ  vs. frequency f . Comparison between transverse velocities at 1E - 3E  evaluated from bending moments measured at A-D (solid 

curves) and transverse velocities measured at 1E - 3E  (dotted curves) in Case 2. Results for frequencies up to 500 Hz. 

 
Cases 1 and 2 show that the quality of the evaluated results 
is generally high when section E is located within the seg-
ment AD, whereas it rapidly decays outside. This is con-
sistent with the rapid increase in sensitivity to errors outside 
the segment AD shown in Figure 5 for Case 1. The large 
disagreement near 25.0re ≈≈ tt  s for section 3E  in both 

cases is believed to be due to the difference between ret  and 

evt  which was mentioned in the experimental part. Thus, 

where the large errors occur, information from section 3E  

may not yet have reached sections A-D to the extent re-
quired. This error can be avoided by recording signals till all 
waves are damped out. Then, ret  and evt  can be considered 
to be arbitrarily large. 
  
For Case 3, Figure 9 shows that there is a fair agreement in 
the frequency range 20-500 Hz between (i) the transverse 
velocity evaluated at section 2E  from measurements of 
transverse velocities at sections A-D and (ii) the transverse 
velocity measured at the same section 2E . For Case 4, Fig-
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ure 10 shows that there is a fair agreement in the same range 
of frequencies between (i) the bending moment evaluated at 
section 2E  from measurements of transverse velocities at 

sections A-D and (ii) the bending moment measured at the 
same section 2E .  

 

 

Fig.9 Transverse velocity 2Ew  vs. time t  and 2Eŵ  vs. frequency f . Comparison between transverse velocity at 2E  evaluated from transverse veloci-

ties measured at A-D (solid curves) and transverse velocity measured at 2E  (dotted curves) in Case 3. Results for frequencies up to 500 Hz. 

 

Fig.10 Bending moment 2EM  vs. time t  and 
2EM̂  vs. frequency f . Comparison between bending moment evaluated at 2E  from transverse ve-

locities measured at A-D (solid curves) and bending moment measured at 2E  (dotted curves) in Case 4. Results for frequencies up to 500 Hz. 

 
It should be noted that the accelerometers used are quite 
inaccurate below 10 Hz. This inaccuracy is reflected by the 
disagreement between evaluated and measured quantities 
below 10-20 Hz in Cases 2-4. The fair agreement in Case 4 
was obtained by using the Butterworth high-pass filters 
which reduced this disagreement. 
 
Comparison of Figures 7(b) and 10 shows that the bending 
moment evaluated at section 2E  is more accurate if the 
evaluation is based on measured bending moments at sec-
tions A-D than on measured transverse velocities. Similarly, 
comparison of Figures 8(b) and 9 shows that the transverse 
velocity evaluated at section 2E  is more accurate if the 

evaluation is based on measured transverse velocities at A-
D than on measured bending moments. This is partly ex-
plained by Figure 6 which shows that when the quantity 
evaluated at E is the same as that measured at A-D, the sen-
sitivity to errors is relatively low within and near the seg-
ment AD of the beam. This is not necessarily the case when 
the quantity evaluated at E is different from that (or those) 
measured at A-D. The method of this paper makes use of 
transition matrices which relate the state vectors at the two 
ends of a beam element. It would be possible, as an alterna-
tive, to make use of the corresponding dynamic stiffness 
matrices which relate the generalised forces to the general-
ised velocities at the two ends of the beam element. For the 
beam segment considered, this approach would result in a 
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system FZv = , where Z  is the dynamic stiffness matrix, v  
is the nodal generalised velocity vector, and F  is the nodal 
generalised load vector. If the number of nodes of the beam 
segment considered would be n , corresponding to 1−n  
beam elements, the matrix Z  would be nn 22 ×  and the 
vector v  would contain n2  generalised velocities ( n  ve-
locities and n  angular velocities). Also, the vector F  
would contain four nodal generalised forces (one transverse 
shear force and one bending moment at each end node of 
the beam segment considered) in addition to zeroes. Thus, 
there would be a system of n2  relations between 42 +n  
generalised velocities and forces. If four of these quantities 
are measured, the system FZv =  can generally be solved 
for the remaining ones. Although there may be differences 
in ease of establishing the system to be solved, in ease of 
obtaining the desired elements of the state vector, in ease of 
interpretation of the wave phenomena involved, in computa-
tional efficiency, etc., it should be emphasised that the ap-
proaches involving transition matrices and dynamic stiff-
ness matrices are equivalent. 
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