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Abstract - Speech Emotion Recognition (SER) is an important 
area of affective computing that enables machines to 
understand and respond to human emotions. However, many 
deep learning approaches that achieve high accuracy provide 
limited insight into how predictions are made, which reduces 
their practical reliability in sensitive domains such as 
education and healthcare. This study presents a comparative 
analysis of two attention-based models for SER using the 
RAVDESS dataset: a Bidirectional Long Short-Term Memory 
(BiLSTM) network with temporal attention and a 
Transformer model with multi-head self-attention. Acoustic 
features were extracted using 40 Mel-Frequency Cepstral 
Coefficients (MFCCs) together with their first- and second-
order derivatives, forming a 120-dimensional input feature 
vector. Both models were trained and evaluated on identical 
data splits using accuracy, precision, recall, and F1-score. The 
BiLSTM with temporal attention achieved an accuracy of 
70.14% and F1-score of 68.76%, outperforming the 
Transformer model, which recorded 51.39% and 48.30%, 
respectively. Attention weight analysis showed that the 
BiLSTM model concentrated more effectively on emotionally 
relevant segments of speech, improving interpretability and 
performance. The findings suggest that incorporating 
temporal attention provides a better balance between 
recognition accuracy and model transparency, supporting the 
development of reliable and explainable SER systems for real-
world human–machine interaction. 
Keywords: Speech Emotion Recognition, Interpretable Deep 
Learning, BiLSTM, Temporal Attention, Multi-Head Self-
Attention, Transformer, MFCC, RAVDESS 

I. INTRODUCTION

Speech Emotion Recognition (SER) is a key area in 
affective computing, enabling machines to interpret and 
respond to human emotions in voice-based interactions [1], 
[2]. Its applications span multiple domains, including 
human-computer interaction, education, customer service, 
and mental health monitoring, where accurate emotional 
understanding enhances system responsiveness and user 
experience [3], [4], [5]. Despite these benefits, SER remains 
a technically complex task due to the subtle nature of 
emotional expression and significant inter-speaker 
variability across contexts. A core challenge in SER lies in 
isolating emotion-relevant features from overlapping 
acoustic factors such as background noise, prosody, and 
speaker-specific traits [1], [6]. Extracting robust acoustic 

features is therefore essential for transforming raw audio 
into informative, discriminative representations. Among 
these, Mel-Frequency Cepstral Coefficients (MFCCs) 
remain the most widely adopted due to their efficiency and 
perceptual relevance [7], [8]. These features, often 
combined with prosodic and spectral descriptors, serve as 
foundational inputs for deep learning-based SER models. 

Recent studies have explored hybrid neural architectures 
such as convolutional neural networks (CNNs), BiLSTMs, 
and attention mechanisms to enhance classification 
accuracy and robustness [8], [9], [10]. CNNs have proven 
useful in extracting localized acoustic patterns, while 
BiLSTM networks are effective at modeling bidirectional 
temporal dependencies in speech [11], [12]. Attention 
mechanisms further improve performance by highlighting 
emotionally salient frames within an utterance [9], [13], 
[14]. 

More recently, Transformer-based models employing multi-
head self-attention have shown promise in modeling long-
range dependencies in speech [1], [15].While these 
architectures achieve competitive accuracy, their 
interpretability remains limited due to complex and diffuse 
attention patterns. In high-stakes domains like healthcare 
and education, this lack of transparency poses a barrier to 
adoption, reinforcing the need for interpretable SER 
systems[16], [17]. 

In this context, attention-based BiLSTM models have been 
favored for their balance between performance and 
interpretability. For example, [18], [19] proposed an 
Attentive Time-Frequency Neural Network (ATFNN) that 
integrates both temporal and frequency attention across 
BiLSTM and Transformer layers. In another work , [20], 
Proposed  a lightweight Speech Emotion Recognition (SER) 
architecture that integrates attention-based local feature 
blocks (ALFBs) to capture high-level relevant feature 
vectors and a global feature block (GFB) technique to 
capture sequential, long-term dependencies from speech 
signals By aggregating these local and global contextual 
feature vectors, the model effectively captures internal 
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correlations reflecting complex human emotional cues The 
approach was evaluated using four types of spectral features 
(mel-frequency cepstral coefficients, mel-spectrogram, root 
mean square value, and zero-crossing rate) and achieved 
state-of-the-art performance with high mean accuracies 
(e.g., 99.65% on TESS, 94.88% on RAVDESS, 98.12% on 
BanglaSER, 97.94% on SUBESCO, and 97.19% on Emo-
DB) across five multi-lingual benchmark datasets through a 
5-fold cross-validation strategy .

Similarly, Lu et al. , [21] introduced Local to Global 
Feature Aggregation (LGFA), combining a frame-level and 
segment-level Transformer to preserve both fine-grained 
and contextual emotional features, achieving high 
recognition rates on IEMOCAP and CASIA. Another 
authors W. Chen et al., [22] proposed the Deformable 
Speech Transformer (DST), a novel and adaptive model for 
speech emotion recognition. DST dynamically adjusts 
attention window sizes and positions through a deformable 
attention mechanism guided by a lightweight decision 
network, enabling the extraction of multi-granularity 
emotional cues. Evaluated on the IEMOCAP dataset, DST 
achieved a weighted accuracy of 71.8% and an unweighted 
accuracy of 73.6%, surpassing existing methods. On the 
MELD dataset, it attained a weighted F1 score of 48.8%, 
outperforming current state-of-the-art systems. These results 
underscore DST's effectiveness and robustness in emotion 
recognition from speech. 

Building on these advances, our study aims to 
systematically compare two SER architectures: one based 
on BiLSTM with temporal attention and another based on a 
Transformer with multi-head self-attention. While both 
leverage MFCCs as input features, they differ 
fundamentally in how they model temporal dependencies 
and in their interpretability. Our goal is to examine not only 
their predictive performance on the RAVDESS dataset but 
also their transparency through attention weight analysis, 
thereby contributing to the design of human-centered, 
explainable SER systems.Motivated by these observations, 
this study presents a comparative analysis of two attention-
based deep learning architectures for SER: a BiLSTM 
network with temporal attention and a Transformer model 
employing multi-head self-attention. Using the RAVDESS 
dataset, this work evaluates both models in terms of 
classification performance and interpretability, based on 
MFCC-derived acoustic features. The primary objective is 
to determine which attention mechanism provides a better 
balance between predictive accuracy and model 
transparency, thereby supporting the development of 
reliable and explainable SER systems for human-centered 
applications. 

II. METHODOLOGY

A. Dataset and Preprocessing

The study employed the RAVDESS dataset, which contains 
recordings from 24 professional actors (12 male and 12 

female) expressing eight emotions: neutral, calm, happy, 
sad, angry, fearful, disgust, and surprise. Each emotion was 
recorded at two intensity levels, resulting in a balanced 
emotional corpus. All audio samples are in high-quality 
WAV format, sampled at 48 kHz, providing consistent 
signal quality for acoustic analysis. Before feature 
extraction, each utterance was normalized to reduce speaker 
and amplitude variations and segmented into short 
overlapping frames suitable for spectral feature 
computation. The dataset was divided into training and 
testing subsets using a stratified 80/20 split to preserve 
emotion and speaker distribution. 

B. Feature Extraction

Acoustic features were extracted to represent the emotional 
characteristics of speech in a structured numerical form 
suitable for deep learning models. Mel-Frequency Cepstral 
Coefficients (MFCCs) were chosen because they provide a 
compact and perceptually relevant description of the speech 
spectrum. Each audio frame, obtained using a 25 ms 
analysis window with a 10 ms hop size, was represented by 
40 MFCCs. To capture short-term temporal dynamics, the 
first- and second-order derivatives (delta and delta-delta) 
were appended, producing a 120-dimensional feature vector 
per frame. The extracted features were normalized on a per-
utterance basis to ensure stable model training and 
consistent scaling across speakers. 

C. Model Architecture

Two deep learning architectures were developed to evaluate 
the relationship between model interpretability and 
classification performance: a BiLSTM network with 
temporal attention and a Transformer encoder with multi-
head self-attention. Both models use the same input 
representation based on 120-dimensional MFCC feature 
sequences. 

1. BiLSTM + Temporal Attention: The first model employs
a Bidirectional Long Short-Term Memory (BiLSTM) layer
with 128 units in each direction to capture contextual
dependencies across time. A dropout rate of 0.5 is applied to
reduce overfitting. To enhance interpretability, a temporal
attention layer is introduced to assign adaptive weights to
different time steps based on their emotional relevance.
Given a sequence of BiLSTM hidden states 𝒉𝒉𝒕𝒕, the attention
mechanism computes attention weights 𝜶𝜶𝒕𝒕 and a context
vector 𝒄𝒄 as:

𝛼𝛼𝑡𝑡 = exp(𝑊𝑊𝑡𝑡ℎ𝑡𝑡+𝑏𝑏𝑡𝑡)
∑ exp𝑖𝑖 (𝑊𝑊𝑖𝑖ℎ𝑖𝑖+𝑏𝑏𝑖𝑖)

, 𝑐𝑐 = ∑ 𝛼𝛼𝑡𝑡𝑡𝑡 ℎ𝑡𝑡 (1) 

where 𝑊𝑊𝑡𝑡 and 𝑏𝑏𝑡𝑡 are learnable parameters. The resulting 
context vector 𝑐𝑐 summarizes the sequence by emphasizing 
emotionally salient segments. This vector is passed to a 
dense layer with Softmax activation to classify each 
utterance into one of eight emotion categories. The total 
number of trainable parameters is approximately 257,453. 
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2. Transformer with Multi-Head Self-Attention: The second
architecture is based on a Transformer encoder structure
designed to capture global dependencies across the entire
sequence. The input features are first normalized, followed
by a multi-head self-attention block that models temporal
relationships in parallel. A position-wise feed-forward
network with 128 units and a dropout rate of 0.5 is applied
to enhance generalization. The output is aggregated over
time using a GlobalAveragePooling1D layer, and a final
dense Softmax layer generates the emotion predictions. This
model has approximately 140,768 trainable parameters,
making it more compact than the BiLSTM-based
architecture.

D. Training Procedure

Both models were implemented and trained in a Google 
Colab environment utilizing GPU acceleration. The models 
were optimized using the Adam optimizer with a learning 
rate of 0.001 and trained using the categorical cross-entropy 

loss function, suitable for multi-class classification. 
Training was conducted over a maximum of 50 epochs with 
a batch size of 32. Dropout regularization (rate = 0.5) was 
applied after the BiLSTM and attention layers to prevent 
overfitting. A validation split of 20% was used during 
training, with early stopping (patience = 5) based on 
validation loss. This configuration ensured efficient 
convergence and improved generalization.  

E. Architectural Summary of BiLSTM and Transformer
Models

The layer-wise architectures of both models are presented 
below. Tables I and II present the layer-wise architecture, 
output shapes, and parameter counts for the BiLSTM + 
Temporal Attention model and the Transformer-based 
Multi-Head Attention model, respectively. These summaries 
clarify the structural differences and computational 
complexity of both models. 

TABLE I BILSTM + TEMPORAL ATTENTION MODEL ARCHITECTURE 
Layer (Type) Output Shape Parameters 

Input Layer (None, 165, 120) 0 

Bidirectional (BiLSTM) (None, 165, 256) 254,976 

Dropout (None, 165, 256) 0 

Temporal Attention (None, 256) 421 

Dense (Softmax) (None, 8) 2,056 

Total Parameters 257,453 

TABLE II TRANSFORMER-BASED MULTI-HEAD ATTENTION MODEL ARCHITECTURE 
Layer (Type) Output Shape Parameters 

Input Layer (None, 165, 120) 0 

Layer Normalization (None, 165, 120) 240 

Multi-Head Self-Attention (None, 165, 120) 123,768 

Dropout (None, 165, 120) 0 

Layer Normalization (None, 165, 120) 240 

Dense (Position-Wise Feed) (None, 165, 128) 15,488 

Dropout (None, 165, 128) 0 

GlobalAveragePooling1D (None, 128) 0 

Dense (Softmax) (None, 8) 1,032 

Total Parameters 140,768 

These tables provide a comprehensive summary of the layer 
configurations, output dimensions, and parameter counts for 
both models. 

III. RESULTS AND DISCUSSION

A. Quantitative Performance Evaluation

Table III summarizes the performance of the BiLSTM + 
Temporal Attention and Transformer-based models on the 
RAVDESS dataset. The BiLSTM model achieved higher 

accuracy (70.14%) and F1-score (68.76%) than the 
Transformer model (51.39% and 48.30%, respectively). 
Similar improvements were observed in precision 69.86% 
vs. 54.59%) and recall (69.61% vs. 49.14%).  

These metrics substantiate the advantage of temporal 
attention in enhancing emotional feature discrimination, 
particularly in scenarios with subtle prosodic shifts. The 
Transformer model’s lower scores suggest that while 
capable of capturing global dependencies, it struggles with 
short or context-sensitive emotional cues. 
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TABLE III PERFORMANCE COMPARISON BETWEEN TEMPORAL AND MULTI-HEAD 
SELF-ATTENTION MODELS ON RAVDESS 

Model Accuracy Precision Recall F1-Score 

BiLSTM + Temporal Attention  0.7014 0.6986 0.6961 0.6876 

Transformer multi-head self-attention 0.5139 0.5459 0.4914 0.4830 

These results demonstrate that the temporal attention 
mechanism enhances the model’s ability to discriminate 
emotional features, particularly in utterances with subtle 
prosodic variations. Although the Transformer model 
captures long-range dependencies, its performance suggests 
difficulty in identifying short-term or context-sensitive 
emotional cues. (see Figure 4). The comparative analysis 
highlights that localized temporal modeling provides more 
robust emotion discrimination in speech data characterized 
by variable intensity and duration. Beyond classification 
accuracy, interpretability remains a crucial aspect of speech 
emotion recognition, especially in applications such as 
healthcare, education, and affective computing. The 
BiLSTM model’s temporal attention mechanism provides 
transparent insight into how different time segments 
contribute to emotion prediction, thereby reinforcing user 
trust and supporting human-centered deployment. In 
contrast, the Transformer’s multi-head self-attention, while 
effective in modeling global dependencies, exhibits less 
discriminative focus and lower performance in capturing 
short or context-dependent emotional cues. These findings 
emphasize that temporal attention not only improves 
predictive accuracy but also enhances the interpretability of 
SER models, making them more suitable for real-world use. 

B. Training Dynamics and Convergence Analysis
 

Figures 1 and 2 display the training and validation accuracy 
and loss curves across epochs for both models. The 
BiLSTM + Temporal Attention model exhibits a smoother 
and more gradual improvement in accuracy, with training 
stabilizing around epoch 30. In contrast, the Transformer 
model converges quickly but begins to plateau early, 
reaching its stopping point near epoch 15 due to early 

stopping. The loss curve for the BiLSTM model shows 
steady minimization with smaller fluctuations, which 
suggests better generalization. Overall, these trends indicate 
that while the Transformer learns faster initially, the 
BiLSTM architecture offers more stable and reliable 
training dynamics. 

C. Attention Weight Visualization and Interpretability

To assess the interpretability of the BiLSTM + Temporal 
Attention model, we visualized attention weights assigned 
to different time steps for representative utterances (Fig.3). 
These plots reveal the model’s focus on temporally 
localized segments such as pitch inflections, stressed 
syllables, and pauses that correspond to emotionally salient 
cues in speech. The sharp peaks in attention highlight the 
model’s capacity to isolate the most relevant portions of the 
sequence that drive its emotion predictions. Fig. 4 presents 
the attention weight distribution from the Transformer 
model with multi-head self-attention. Compared to the 
focused and interpretable patterns of the BiLSTM model, 
the Transformer exhibits a more diffuse attention spread 
across the sequence. Although this pattern shows variation, 
it lacks the sharp discriminative peaks that aid human 
interpretation. These visual contrasts underscore the trade-
off between global context modeling and interpretability. 
While the Transformer is capable of capturing broader 
temporal dependencies, the BiLSTM model provides more 
transparent decision-making a crucial advantage in sensitive 
domains such as healthcare, education, and assistive 
technology. Together, Fig. 3 and 4 offer qualitative 
validation of the attention mechanisms’ behavior and their 
impact on model explainability in SER tasks. 

Fig.1 Accuracy vs. Epochs for BiLSTM and Transformer Models
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Fig.2 Loss vs. Epochs for BiLSTM and Transformer Models 

 

 
Fig.3 Attention Weight Distribution Over Time in BiLSTM + Temporal Attention Model 

 

 
Fig.4 Temporal Distribution of Multi-Head Attention Weights in the Transformer Model 

 
D. Confusion Matrix and Interpretability Analysis 
 

Figures 5 and 6 present the confusion matrices for the 
BiLSTM and Transformer models, respectively. The 
BiLSTM model achieves more consistent classification 
across emotion categories, with fewer confusions among 
acoustically similar emotions such as calm–sad and angry–
fearful. In contrast, the Transformer model shows higher 
misclassification rates within these classes, suggesting 
difficulty in distinguishing subtle emotional variations. This 

discrepancy aligns with the attention visualizations, where 
the BiLSTM demonstrates sharper temporal focus on 
emotionally salient regions such as pitch fluctuations and 
intensity peaks thereby enhancing both accuracy and 
interpretability. These observations confirm that temporal 
attention provides a dual advantage, delivering superior 
quantitative performance and clearer qualitative insight in 
speech emotion recognition tasks. 
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.  
Fig.5 Confusion Matrix – BiLSTM + Temporal Attention 

 

 
Fig.6 Confusion Matrix – Transformer (Multi-Head Self-Attention) 

 
IV. CONCLUSION 

 

This study presented a comparative evaluation of two 
attention-based deep learning models for speech emotion 
recognition (SER) using MFCC-derived acoustic features 
from the RAVDESS dataset. A Bidirectional LSTM 
network with temporal attention was compared with a 
Transformer model employing multi-head self-attention. 
The BiLSTM + Temporal Attention model consistently 
outperformed the Transformer across all metrics, achieving 
an accuracy of 70.14% and an F1-score of 68.76%. Beyond 
predictive accuracy, the temporal attention mechanism 

provided transparent interpretability by highlighting 
emotionally salient regions of speech, a crucial property for 
deployment in domains such as healthcare, education, and 
affective computing. In contrast, the Transformer’s complex 
attention patterns captured broader temporal context but 
were less effective for short or context-dependent utterances 
and offered limited transparency. These findings emphasize 
that interpretability should be treated as a core design 
objective complementing accuracy when developing 
human-centered AI systems for emotion recognition. Future 
work will extend this framework to multimodal emotion 
analysis by incorporating facial and physiological cues, and 
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explore hybrid attention strategies that combine the 
interpretability of temporal attention with the contextual 
capacity of self-attention. Domain adaptation approaches 
will also be investigated to enhance robustness under 
diverse real-world acoustic conditions. 
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