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Abstract - Speech Emotion Recognition (SER) is an important
area of affective computing that enables machines to
understand and respond to human emotions. However, many
deep learning approaches that achieve high accuracy provide
limited insight into how predictions are made, which reduces
their practical reliability in sensitive domains such as
education and healthcare. This study presents a comparative
analysis of two attention-based models for SER using the
RAVDESS dataset: a Bidirectional Long Short-Term Memory
(BILSTM) network with temporal attention and a
Transformer model with multi-head self-attention. Acoustic
features were extracted using 40 Mel-Frequency Cepstral
Coefficients (MFCCs) together with their first- and second-
order derivatives, forming a 120-dimensional input feature
vector. Both models were trained and evaluated on identical
data splits using accuracy, precision, recall, and F1-score. The
BiLSTM with temporal attention achieved an accuracy of
70.14% and Fl-score of 68.76%, outperforming the
Transformer model, which recorded 51.39% and 48.30%,
respectively. Attention weight analysis showed that the
BiLSTM model concentrated more effectively on emotionally
relevant segments of speech, improving interpretability and
performance. The findings suggest that incorporating
temporal attention provides a better balance between
recognition accuracy and model transparency, supporting the
development of reliable and explainable SER systems for real-
world human-machine interaction.

Keywords: Speech Emotion Recognition, Interpretable Deep
Learning, BiLSTM, Temporal Attention, Multi-Head Self-
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I. INTRODUCTION

Speech Emotion Recognition (SER) is a key area in
affective computing, enabling machines to interpret and
respond to human emotions in voice-based interactions [1],
[2]. Its applications span multiple domains, including
human-computer interaction, education, customer service,
and mental health monitoring, where accurate emotional
understanding enhances system responsiveness and user
experience [3], [4], [S5]. Despite these benefits, SER remains
a technically complex task due to the subtle nature of
emotional expression and significant inter-speaker
variability across contexts. A core challenge in SER lies in
isolating emotion-relevant features from overlapping
acoustic factors such as background noise, prosody, and
speaker-specific traits [1], [6]. Extracting robust acoustic
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features is therefore essential for transforming raw audio
into informative, discriminative representations. Among
these, Mel-Frequency Cepstral Coefficients (MFCCs)
remain the most widely adopted due to their efficiency and
perceptual relevance [7], [8]. These features, often
combined with prosodic and spectral descriptors, serve as
foundational inputs for deep learning-based SER models.

Recent studies have explored hybrid neural architectures
such as convolutional neural networks (CNNs), BiLSTMs,
and attention mechanisms to enhance classification
accuracy and robustness [8], [9], [10]. CNNs have proven
useful in extracting localized acoustic patterns, while
BiLSTM networks are effective at modeling bidirectional
temporal dependencies in speech [11], [12]. Attention
mechanisms further improve performance by highlighting
emotionally salient frames within an utterance [9], [13],
[14].

More recently, Transformer-based models employing multi-
head self-attention have shown promise in modeling long-
range dependencies in speech [1], [15].While these
architectures  achieve competitive accuracy, their
interpretability remains limited due to complex and diffuse
attention patterns. In high-stakes domains like healthcare
and education, this lack of transparency poses a barrier to
adoption, reinforcing the need for interpretable SER
systems[16], [17].

In this context, attention-based BiLSTM models have been
favored for their balance between performance and
interpretability. For example, [18], [19] proposed an
Attentive Time-Frequency Neural Network (ATFNN) that
integrates both temporal and frequency attention across
BiLSTM and Transformer layers. In another work , [20],
Proposed a lightweight Speech Emotion Recognition (SER)
architecture that integrates attention-based local feature
blocks (ALFBs) to capture high-level relevant feature
vectors and a global feature block (GFB) technique to
capture sequential, long-term dependencies from speech
signals By aggregating these local and global contextual
feature vectors, the model effectively captures internal
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correlations reflecting complex human emotional cues The
approach was evaluated using four types of spectral features
(mel-frequency cepstral coefficients, mel-spectrogram, root
mean square value, and zero-crossing rate) and achieved
state-of-the-art performance with high mean accuracies
(e.g., 99.65% on TESS, 94.88% on RAVDESS, 98.12% on
BanglaSER, 97.94% on SUBESCO, and 97.19% on Emo-
DB) across five multi-lingual benchmark datasets through a
5-fold cross-validation strategy .

Similarly, Lu et al. , [21] introduced Local to Global
Feature Aggregation (LGFA), combining a frame-level and
segment-level Transformer to preserve both fine-grained
and contextual emotional features, achieving high
recognition rates on IEMOCAP and CASIA. Another
authors W. Chen et al., [22] proposed the Deformable
Speech Transformer (DST), a novel and adaptive model for
speech emotion recognition. DST dynamically adjusts
attention window sizes and positions through a deformable
attention mechanism guided by a lightweight decision
network, enabling the extraction of multi-granularity
emotional cues. Evaluated on the IEMOCAP dataset, DST
achieved a weighted accuracy of 71.8% and an unweighted
accuracy of 73.6%, surpassing existing methods. On the
MELD dataset, it attained a weighted F1 score of 48.8%,
outperforming current state-of-the-art systems. These results
underscore DST's effectiveness and robustness in emotion
recognition from speech.

Building on these advances, our study aims to
systematically compare two SER architectures: one based
on BiLSTM with temporal attention and another based on a
Transformer with multi-head self-attention. While both
leverage MFCCs as input features, they differ
fundamentally in how they model temporal dependencies
and in their interpretability. Our goal is to examine not only
their predictive performance on the RAVDESS dataset but
also their transparency through attention weight analysis,
thereby contributing to the design of human-centered,
explainable SER systems.Motivated by these observations,
this study presents a comparative analysis of two attention-
based deep learning architectures for SER: a BiLSTM
network with temporal attention and a Transformer model
employing multi-head self-attention. Using the RAVDESS
dataset, this work evaluates both models in terms of
classification performance and interpretability, based on
MFCC-derived acoustic features. The primary objective is
to determine which attention mechanism provides a better
balance between predictive accuracy and model
transparency, thereby supporting the development of
reliable and explainable SER systems for human-centered
applications.

II. METHODOLOGY
A. Dataset and Preprocessing

The study employed the RAVDESS dataset, which contains
recordings from 24 professional actors (12 male and 12

AJES Vol.14 No.2 July-December 2025

22

female) expressing eight emotions: neutral, calm, happy,
sad, angry, fearful, disgust, and surprise. Each emotion was
recorded at two intensity levels, resulting in a balanced
emotional corpus. All audio samples are in high-quality
WAV format, sampled at 48 kHz, providing consistent
signal quality for acoustic analysis. Before feature
extraction, each utterance was normalized to reduce speaker
and amplitude variations and segmented into short
overlapping frames suitable for spectral feature
computation. The dataset was divided into training and
testing subsets using a stratified 80/20 split to preserve
emotion and speaker distribution.

B. Feature Extraction

Acoustic features were extracted to represent the emotional
characteristics of speech in a structured numerical form
suitable for deep learning models. Mel-Frequency Cepstral
Coefficients (MFCCs) were chosen because they provide a
compact and perceptually relevant description of the speech
spectrum. Each audio frame, obtained using a 25 ms
analysis window with a 10 ms hop size, was represented by
40 MFCCs. To capture short-term temporal dynamics, the
first- and second-order derivatives (delta and delta-delta)
were appended, producing a 120-dimensional feature vector
per frame. The extracted features were normalized on a per-
utterance basis to ensure stable model training and

consistent scaling across speakers.
C. Model Architecture

Two deep learning architectures were developed to evaluate
the relationship between model interpretability and
classification performance: a BIiLSTM network with
temporal attention and a Transformer encoder with multi-
head self-attention. Both models use the same input
representation based on 120-dimensional MFCC feature

sequences.

1. BiLSTM + Temporal Attention: The first model employs
a Bidirectional Long Short-Term Memory (BiLSTM) layer
with 128 units in each direction to capture contextual
dependencies across time. A dropout rate of 0.5 is applied to
reduce overfitting. To enhance interpretability, a temporal
attention layer is introduced to assign adaptive weights to
different time steps based on their emotional relevance.
Given a sequence of BILSTM hidden states h,, the attention
mechanism computes attention weights a, and a context
vector € as:

exp(W¢he+b
a; = p(Wihe+be)

= c= a:h
Xiexp(Wihi+by)’ Xeache

(M

where W; and b, are learnable parameters. The resulting
context vector ¢ summarizes the sequence by emphasizing
emotionally salient segments. This vector is passed to a
dense layer with Softmax activation to classify each
utterance into one of eight emotion categories. The total
number of trainable parameters is approximately 257,453.
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2. Transformer with Multi-Head Self-Attention: The second
architecture is based on a Transformer encoder structure
designed to capture global dependencies across the entire
sequence. The input features are first normalized, followed
by a multi-head self-attention block that models temporal
relationships in parallel. A position-wise feed-forward
network with 128 units and a dropout rate of 0.5 is applied
to enhance generalization. The output is aggregated over
time using a GlobalAveragePoolinglD layer, and a final
dense Softmax layer generates the emotion predictions. This
model has approximately 140,768 trainable parameters,
making it more compact than the BiLSTM-based
architecture.

D. Training Procedure

Both models were implemented and trained in a Google
Colab environment utilizing GPU acceleration. The models
were optimized using the Adam optimizer with a learning
rate of 0.001 and trained using the categorical cross-entropy

Multi-Head Self-Attention

loss function, suitable for multi-class classification.
Training was conducted over a maximum of 50 epochs with
a batch size of 32. Dropout regularization (rate = 0.5) was
applied after the BILSTM and attention layers to prevent
overfitting. A wvalidation split of 20% was used during
training, with early stopping (patience 5) based on
validation loss. This configuration ensured efficient
convergence and improved generalization.

E.  Architectural Summary of BiLSTM and Transformer
Models

The layer-wise architectures of both models are presented
below. Tables I and II present the layer-wise architecture,
output shapes, and parameter counts for the BiLSTM +
Temporal Attention model and the Transformer-based
Multi-Head Attention model, respectively. These summaries
clarify the structural differences and computational
complexity of both models.

TABLE I BILSTM + TEMPORAL ATTENTION MODEL ARCHITECTURE

Layer (Type) Output Shape | Parameters
Input Layer (None, 165, 120) 0
Bidirectional (BILSTM) | (None, 165, 256) 254,976
Dropout (None, 165, 256) 0
Temporal Attention (None, 256) 421
Dense (Softmax) (None, 8) 2,056
Total Parameters 257,453
TABLE I TRANSFORMER-BASED MULTI-HEAD ATTENTION MODEL ARCHITECTURE
Layer (Type) Output Shape | Parameters
Input Layer (None, 165, 120) 0
Layer Normalization (None, 165, 120) 240
Multi-Head Self-Attention (None, 165, 120) 123,768
Dropout (None, 165, 120) 0
Layer Normalization (None, 165, 120) 240
Dense (Position-Wise Feed) | (None, 165, 128) 15,488
Dropout (None, 165, 128) 0
GlobalAveragePooling1D (None, 128) 0
Dense (Softmax) (None, 8) 1,032
Total Parameters 140,768

These tables provide a comprehensive summary of the layer
configurations, output dimensions, and parameter counts for
both models.

III. RESULTS AND DISCUSSION
A. Quantitative Performance Evaluation
Table III summarizes the performance of the BiLSTM +

Temporal Attention and Transformer-based models on the
RAVDESS dataset. The BILSTM model achieved higher
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accuracy (70.14%) and Fl-score (68.76%) than the
Transformer model (51.39% and 48.30%, respectively).
Similar improvements were observed in precision 69.86%
vs. 54.59%) and recall (69.61% vs. 49.14%).

These metrics substantiate the advantage of temporal
attention in enhancing emotional feature discrimination,
particularly in scenarios with subtle prosodic shifts. The
Transformer model’s lower scores suggest that while
capable of capturing global dependencies, it struggles with
short or context-sensitive emotional cues.

AJES Vol.14 No.2 July-December 2025



Rexcharles Enyinna Donatus

TABLE III PERFORMANCE COMPARISON BETWEEN TEMPORAL AND MULTI-HEAD
SELF-ATTENTION MODELS ON RAVDESS

Model Accuracy | Precision | Recall | F1-Score
BiLSTM + Temporal Attention 0.7014 0.6986 0.6961 0.6876
Transformer multi-head self-attention 0.5139 0.5459 0.4914 | 0.4830

These results demonstrate that the temporal attention
mechanism enhances the model’s ability to discriminate
emotional features, particularly in utterances with subtle
prosodic variations. Although the Transformer model
captures long-range dependencies, its performance suggests
difficulty in identifying short-term or context-sensitive
emotional cues. (see Figure 4). The comparative analysis
highlights that localized temporal modeling provides more
robust emotion discrimination in speech data characterized
by variable intensity and duration. Beyond classification
accuracy, interpretability remains a crucial aspect of speech
emotion recognition, especially in applications such as
healthcare, education, and affective computing. The
BiLSTM model’s temporal attention mechanism provides
transparent insight into how different time segments
contribute to emotion prediction, thereby reinforcing user
trust and supporting human-centered deployment. In
contrast, the Transformer’s multi-head self-attention, while
effective in modeling global dependencies, exhibits less
discriminative focus and lower performance in capturing
short or context-dependent emotional cues. These findings
emphasize that temporal attention not only improves
predictive accuracy but also enhances the interpretability of
SER models, making them more suitable for real-world use.

B. Training Dynamics and Convergence Analysis

Figures 1 and 2 display the training and validation accuracy
and loss curves across epochs for both models. The
BiLSTM + Temporal Attention model exhibits a smoother
and more gradual improvement in accuracy, with training
stabilizing around epoch 30. In contrast, the Transformer
model converges quickly but begins to plateau early,
reaching its stopping point near epoch 15 due to early

stopping. The loss curve for the BiLSTM model shows
steady minimization with smaller fluctuations, which
suggests better generalization. Overall, these trends indicate
that while the Transformer learns faster initially, the
BiLSTM architecture offers more stable and reliable

training dynamics.
C. Attention Weight Visualization and Interpretability

To assess the interpretability of the BILSTM + Temporal
Attention model, we visualized attention weights assigned
to different time steps for representative utterances (Fig.3).
These plots reveal the model’s focus on temporally
localized segments such as pitch inflections, stressed
syllables, and pauses that correspond to emotionally salient
cues in speech. The sharp peaks in attention highlight the
model’s capacity to isolate the most relevant portions of the
sequence that drive its emotion predictions. Fig. 4 presents
the attention weight distribution from the Transformer
model with multi-head self-attention. Compared to the
focused and interpretable patterns of the BiLSTM model,
the Transformer exhibits a more diffuse attention spread
across the sequence. Although this pattern shows variation,
it lacks the sharp discriminative peaks that aid human
interpretation. These visual contrasts underscore the trade-
off between global context modeling and interpretability.
While the Transformer is capable of capturing broader
temporal dependencies, the BILSTM model provides more
transparent decision-making a crucial advantage in sensitive
domains such as healthcare, education, and assistive
technology. Together, Fig. 3 and 4 offer qualitative
validation of the attention mechanisms’ behavior and their
impact on model explainability in SER tasks.

Model Accuracy
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Fig.1 Accuracy vs. Epochs for BILSTM and Transformer Models
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D. Confusion Matrix and Interpretability Analysis

Figures 5 and 6 present the confusion matrices for the
BiLSTM and Transformer models, respectively. The
BiLSTM model achieves more consistent classification
across emotion categories, with fewer confusions among
acoustically similar emotions such as calm-sad and angry—
fearful. In contrast, the Transformer model shows higher
misclassification rates within these classes, suggesting
difficulty in distinguishing subtle emotional variations. This

75

100 125 150

Time Steps
Fig.4 Temporal Distribution of Multi-Head Attention Weights in the Transformer Model
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discrepancy aligns with the attention visualizations, where
the BIiLSTM demonstrates sharper temporal focus on
emotionally salient regions such as pitch fluctuations and
intensity peaks thereby enhancing both accuracy and
interpretability. These observations confirm that temporal
attention provides a dual advantage, delivering superior
quantitative performance and clearer qualitative insight in
speech emotion recognition tasks.
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IV. CONCLUSION provided transparent interpretability by highlighting

This study presented a comparative evaluation of two
attention-based deep learning models for speech emotion
recognition (SER) using MFCC-derived acoustic features
from the RAVDESS dataset. A Bidirectional LSTM
network with temporal attention was compared with a
Transformer model employing multi-head self-attention.
The BILSTM + Temporal Attention model consistently
outperformed the Transformer across all metrics, achieving
an accuracy of 70.14% and an F1-score of 68.76%. Beyond
predictive accuracy, the temporal attention mechanism
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emotionally salient regions of speech, a crucial property for
deployment in domains such as healthcare, education, and
affective computing. In contrast, the Transformer’s complex
attention patterns captured broader temporal context but
were less effective for short or context-dependent utterances
and offered limited transparency. These findings emphasize
that interpretability should be treated as a core design
objective complementing accuracy when developing
human-centered Al systems for emotion recognition. Future
work will extend this framework to multimodal emotion
analysis by incorporating facial and physiological cues, and
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explore hybrid attention strategies that combine the
interpretability of temporal attention with the contextual
capacity of self-attention. Domain adaptation approaches
will also be investigated to enhance robustness under
diverse real-world acoustic conditions.
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